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Abstract. We consider the dynamics of a defect tunnelling between two trap sites in a metal. 
The interaction with conduction electrons is shown to influence strongly the defect motion 
at low temperatures. We calculate the structure factor for inelastic neutron scattering. The 
inelastic scattering peaks found at very low temperatures are shown to merge into a single 
quasi-elastic peak at higher temperatures. The width of the quasi-elastic peak narwws as 
the temperature is increased further. This behaviour results from the damping of the defect 
motion through the non-adiabatic response of the screening cloud. The present paper 
extends our previous results for symmetric two-state systems to the asymmetric case. 

1. Introduction 

Recently, Kondo [ 11 has pointed out that conduction electrons should have a dominant 
influence on the quantum dynamics of defects in metals at very low temperatures. 
Because of the finite density of electron-hole pair excitations with arbitrarily small 
energies, the electronic screening cloud causes non-trivial temperature-dependent 
effects in a region where the influence of phonons on the defect motion can already be 
described by a temperature-independent renormalisation of the defect Hamiltonian. 
These electronic effects have led to an explanation of the anomalous increase with 
decreasing temperature of the muon hopping rate in aluminium and copper below 10 K 
[ l ,  21. Another system studied in detail is hydrogen trapped by oxygen or nitrogen in 
niobium [3]. When the superconductivity of niobium is destroyed by a magnetic field, 
the electronic influence leads to a crossover between coherent clock-like hydrogen 
tunnelling at very low temperatures and incoherent hopping-like tunnelling above a few 
kelvin [4,5]. For a comprehensive survey of these phenomena we refer to a recent article 
by Kondo [6]. 

A defect tunnelling between two trap sites in a metal is a special case of a two-state 
system in contact with a thermal bath. Other examples of such systems are metallic 
glasses [7], superconducting interference devices [8], chiral molecules interacting with 
the radiation field [9] and electron transfer reactions (see e.g. [lo]). The two-state system 
has received wide attention as a representative model for studying the interplay of 
quantum and dissipative effects. The theoretical description in terms of a spin-boson 
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Hamiltonian and a functional integral technique has been expounded by Leggett et 
a1 [U]. Much of the theoretical work has relied on the so-called dilute bounce gas 
approximation to the underlying functional integral expression [ 11, 121. In an earlier 
work [4] we have employed these methods to calculate the structure factor for a sym- 
metric two-state system coupled to an Ohmic bath. The results were found to be in good 
agreement with recent experiments by Wipf et a1 [5] on hydrogen trapped by oxygen 
in normal-state niobium. To explore the behaviour of the structure factor at higher 
temperatures one needs higher defect concentrations. Then the strain field interaction 
between tunnelling centres will lead to asymmetric two-state systems. This has motivated 
the present study where we extend our earlier results to the asymmetric case. 

We have chosen to use here an approach quite different from the functional integral 
technique. The method employed bears close resemblance to the work by Zwergerf131 
and Aslangul et a1 [14] and other similar methods [15] that go under the name of 
'relaxation theory'. For the symmetric case the results reduce to our earlier findings [4]. 
We shall take advantage of the well established correspondence between a two-state 
system coupled to a fermionic bath and one coupled to a bath of harmonic oscillators 
with appropriate spectral density and coupling strength [ 161. Our treatment will be based 
on the spin-boson Hamiltonian. Although the calculation here is specifically motivated 
by the availability of neutron scattering data for H motion inNb, the method is of general 
interest in the context of spectral properties of the spin-boson Hamiltonian. 

The outline of the paper is as follows. In 0 2.1 we formulate the problem by first 
introducing the basic Hamiltonian and its mapping to a spin-boson model with Ohmic 
dissipation. Section 2.2 bridges the gap between theory and experiment wherein we 
write down the structure factor in terms of a spin-correlation function of the spin-boson 
system. In § 2.3 we state the basic assumptions of our calculation and give an approximate 
expression for the equilibrium density matrix. The main theoretical results are contained 
in 0 3 where an explicit expression for the structure factor is derived in a series of steps. 
Finally, in 0 4 we summarise and discuss the results and present our conclusions. 

2. Formulation of the problem 

2.1. The Hamiltonian 

As mentioned in the introduction we are concerned in this paper with the dynamics of 
an interstitial defect (e.g. H) in a metal at low temperatures where conduction electrons 
have the dominating influence on the defect motion. The Hamiltonian for this interacting 
system can be modelled as [ 1,4] 

where Ho describes the defect in a double-well potential, cLG is the creation operator 
for a conduction electron with wavevector q, spin o and energy sq, and the last term 
accounts for the interaction (via the constant strength V,) between the N-electron system 
and the defect at the position r. 

The Hamiltonian H o  is governed by a potential shown schematically in figure 1. The 
characteristic energy scales are the barrier height Vo,  the quantity 6wo,  w,, being of the 
order of the classical small-oscillation frequencies CO, and w- in the two wells, and the 
asymmetry energy hs between the ground states in the two wells. The gap between the 
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Figure 1. A double-well potential for a system in the two-state limit. 

first excited state (of the isolated well) and the ground state will be approximately hw, 
(ho - )  for the right-hand (left-hand) well. If the asymmetry energy he between the 
ground states in the two wells is small compared to Vo and hao, then for kBT e Vo,  hoo 
(but kBT/he arbitrary) the system will be effectively restricted to the two-dimensional 
Hilbert space spanned by the two ground states. Of course, there will be tunnelling 
between the states so that the projected Hamiltonian will be off-diagonal. But the 
tunnelling frequency bo in the WKB limit is of the order of ( ~ ~ V ~ / f i ) ' / ~  exp(-2Vo/fiwo), 
and hence much smaller than wo itself. Therefore, in the regime kgT,  he, hA0 < hoo 
(but k,T/hs and kBT/hAO arbitrary) the dynamics of the defect in the double-well 
potential of figure 1 can be adequately described in terms of the two-state Hamiltonian 

Ho = - i h A o ~ ,  + i h e ~ ~ .  (2.2) 

Here, we have taken the zero of energy as the average of the ground-state energies. For 
a detailed discussion of this truncation approximation we refer to [ 11, 171. 

With the mapping described above, in which the position rof the defect is essentially 
proportional to a, (see (2.12) below), the Hamiltonian Hin  (2.1) describes a two-state 
system in contact with afermionic bath. But as argued by several authors [l, 4, 6, 161, 
the dynamics of the system at sufficiently low temperature is dominantly governed by 
such gross features as the density of states for low-lying excitations off the Fermi surface. 
These excitations can be approximately described by bosons. To the extent that we may 
disregard electron-assisted processes? the equilibrium thermodynamics as well as the 
dynamic properties of the two-state system in a fermionic bath are the same as those of 
a two-state system in a bosonic bath, with however a special form of the spectral function 
J(o) (specified below in (2.5)), characterising the boson excitations. This form describes 
what has been popularised in recent years as the Ohmic dissipation case. Therefore, all 
our subsequent discussions will be based on a model essentially equivalent to the one 
i The coupling constant for these events is proportional to the tunnelling frequency A. and thercfore small 
[18]. However, these processes may become relevant at very low temperatures [19]. 
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given in (2.1) and which has been referred to in the recent literature as the spin-boson 
Hamiltonian: 

H = -&hAoo, + a h ~ a ,  + oz Gi(b; + b j )  + hoiblbi + 2 G f / h ~ j  (2.3) 
i i i 

where b f  is the creation operator for the jth boson of frequency w, and Gjis the coupling 
constant. The last term is a counter-term which disappears upon a unitary transformation 
on H (see below). 

The model and its equivalence to (2.1) are however not completely established unless 
one specifies the spectral function J ( o ) .  The latter, which is defined by 

J ( o )  = (2/h2) G ; ~ ( o  - m i )  
1 

assumes the following specific form for Ohmic dissipation 

J ( o )  = Kco exp(-w/D). 

In the above, K is a phenomenological dimensionless constant that parametrises 
damping which arises in the model only in the limit of an infinitely large number of 
bosons (as tacitly recognised by the operation in (2.4)), and D is a cut-off frequency 
which is of the order of noo. The choice of the cut-off D is somewhat arbitrary. It should 
be noted that D and the tunnelling frequency A. are not independent, since bo contains 
a renormalisation due to the high-frequency environmental modes that are already 
eliminated adiabatically. In the final formulae D and A. appear only in a certain com- 
bination (see (3.35) below) where the arbitrariness of D drops out. See [17] for a 
thorough discussion of this point. 

For s-wave scattering the parameter K has been calculated by Yamada et a1 [20] as 

(1 - L Y ~ ) ' / ~  tan 6 ) LY = sin(2dkF)/2dkF (2.6) 

where 6 is a phase shift (6 < n/2), kF is the Fermi wavevector, and 2d is the distance 
between the two defect sites (figure 1). It is obvious from (2.6) that for the present 
problem 0 C K C 0.5. 

As alluded to earlier, the spin-boson Hamiltonian is calculationally somewhat more 
tractable than the Hamiltonian given in (2.1). In addition, for our later purposes, we 
find it convenient to make a unitary transformation on the Hamiltonian [13-1-51 

H = SHS-' (2.7) 
where S is a unitary operator defined by 

S = exp ( -oz (Gi /hwj) (b j  - b;)) 
i 

One readily finds 

H = -&hAo(B+o- + E-o,) + &heo, + hojbi'bj (2.9) 
i 

where a, = o+ + o- and where 

(2.10) 

This is the basis of the calculations in the sequel. 



Structure factor for neutron scattering 1409 

2.2. Structure factor in terms of spin-correlation functions 

The experimentally measured differential cross section for neutron scattering is given in 
terms of the structure factor (see e.g. [21]). The latter, when the scattering is pre- 
dominantly incoherent (e.g. from H), is defined by (see e.g. [22]) 

S(k, CO) = (2n)-l dtexp(iwt)(exp[-ik. r(O)] exp[ik. r(t)]) (2.11) 

where k and ~ C O  are the momentum and energy transfer for the neutron during the 
scattering process and r(t) the position of the scatterer at time t. When the scatterer 
tunnels between two positions -d  and d (see figure 1) the operator rcan be mapped into 
a Pauli pseudo-spin: 

r = a,d. (2.12) 

Using then a well known Pauli matrix identity we can write 

(exp[-ik.r(O)] exp[ik-r(t)]) = cos2(k.d) + sin2(k.d)(a,(0)o,(t)) (2.13) 

which when substituted into (2.11) gives 

S(k, CO) = cos2(k.d)6(w) + sin2(k.d) '1 dtexp(iot)(a,(O)a,(t)). 
2I-r --j: 

(2.14) 

It is convenient for calculational purposes to introduce a symmetrised correlation func- 
tion 

The structure factor can then be expressed as 

1 
S(k,  U) = cos2(k + d)6 (o )  + sin2@ 

d )  + exp(pnw) 
d t  exp(iot)C(t). (2.16) 

Noting that C(t) = C( -t) ,  the above result can also be rewritten in terms of the real part 
of a Laplace transform: 

sin2(k - d) 
S(k, CO) = cos2(k - d)6(CO) + (2.17) 

where = (kBT)- l ,  z = i o  + 6 and 

c ( z )  = 1% dt  exp(-zt)C(t). 
0 

(2.18) 

The first term in the structure factor represents an elastic peak, which is a consequence 
of restricted diffusion of the scatterer [22]. 
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In order to make direct comparison with experiments it may be useful to perform an 
isotropic average over the direction of the vector d (with its length d fixed) with respect 
to the wavevector k .  The result is 

sin(2kd)j  ( sin(2kd)) 1 
6 ( w ) + -  1-- 

2kd 2kd 1 + exp(pho) S(k, U )  = (1 + 

(2.19) 

For kd 
cubic crystal symmetry, as is the case with niobium. 

2 n ,  such an isotropic average is also appropriate to single-crystal metals with 

2.3. Factorisation approximation of the equilibrium density matrix 

It is evident from (2.16) that the calculation for the structure factor boils down to 
evaluating the correlation function C(t). This requires the calculation of averages such 
as 

(a,(O)o,(t)) = Tr[p,a,(O) exp(iHt/h)o,(O) exp(-iHt/h)] (2.20) 

where pE, the density matrix in equilibrium, is given by 

P E  = (l/z) exp(-pH) (2.21) 

Zbeing the partition function. Using the unitary transformation (2.8),  the cyclic property 
of the trace, and the fact that [a,, SI = 0, it is easy to show that 

(az(0)az(t)) Tr[p,a,(O) exp(i&t/h)a,(O) exp(-ifit/h)] (2.22) 

where PE is obtained from (2.21) upon replacing H by A. So far (2.22) is exact. We now 
write 

B = H ~ + H I + H B  (2.23) 

(2.24) 

(2.25) 

HB = hojb7bj. (2.26) 

Here Hs and HB represent pure spin and bath Hamiltonians respectively whereas HI 
describes the spin-bath interaction. 

The main assumption made in the sequel is that we can describe the system in terms 
of a perturbative expansion in HI. In a first approximation we neglect the interaction 
and put 

i 

exp(-pZ?) = exp( -th/3eo,) exp ( -hp 2 mjbfbj 
1 

which leads to a factorising equilibrium density matrix 

p i  = B[1 - tanh(&2)az]PB 

where 

(2.27) 

(2.28) 
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(2.29) 

and Z, is the partition function associated with the purely bath Hamiltonian HB. The 
thermal expectation value of a, obtained from (2.28) is 

= -tanh(%p&). (2.30) 

This disregards the effects of tunnelling on the equilibrium state. Naturally, the inter- 
action HI will modify the equilibrium density matrix. A more general ansatz for PE reads 

P E  = &[I + + (a,x)a,x + (ay)ay]pB. (2.31) 

While this density matrix is still of a factorising form, we may insert more accurate 
expressions for the spin expectation values. We shall make use of this approximate form 
of PE below and return to a discussion of its validity at the end of 0 3. 

3. Calculation of the spin-correlation function 

3.1. The Liouvillian and the bath-averaged time-development operator 

The symmetrised correlation function can be written from (2.15) and (2.22) as 

C(t) = &Tr{[P,a, (0)  + 0, (O)PEI5z (t>> (3.1) 

where we have introduced 

6,(t) = exp(ilil/h)a,(O) exp( -ililt/6), 

and applied the cyclic property of the trace. Employing then a density matrix of the form 
(2.28) or (2.31) in (3.1) and the fact that a: = 1 and a,,,o, + azo,,, = 0, the expression 
simplifies considerably (exemplifying the advantage of using the symmetrised form in 
C(t>): 

= +T~B{PB[~,(O> + (o,)152(t)>. (3.3) 

We may now perform a partial trace over the spin states yielding 

c(f) = ~TrB{PB([(+Ia,(t)l+) - (-lai(t)l->] -k (Oz>[(+15i(t)l-k> 

+ (- 152 (4 I ->I>> (3.4) 

where the subscript in Tr, implies a trace over the bath variables alone. It is convenient 
at this stage to write the time development of U, in (3.2) in terms of the Liouvillian 
[22] : 

a,(t) = exp(iLt)o,(O) (3.5) 

LA = (l /h) [g ,  A] (3.6) 

6, (Q = W t > a ,  (0) (3.7) 

where i is defined by 

for an arbitrary operator A.  The notation can be simplified further by writing 

where 
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U( t )  E exp(iit) (3.8) 
is the so-called time-development operator. Evidently in (3.4) we require terms of the 
form? 

(nbBln>(dU(t)az (0)bn) 
n 

Here lp) with p = *1 refers to the spin states, In) denotes the occupation-number states 
for bosons, and [ U(t)lav is the bath-averaged time-development operator denoted by 
1221 

(3.10) 

Substitution in (3.4) leads to a more compact expression for the correlation function as 

(3.11) 

The remaining task is clearly then to evaluate the bath-averaged time-development 
operator. 

3.2. Resolvent operator method 

It is evident from the above discussion that what one needs in the structure factor 
calculation (cf. (2.17)) is the Laplace transform of the time-development operator (i.e. 
its resolvent) 

o ( z )  dtexp(-zt)U(t) = 1/(z - iL). (3.12) 

This is a lucky situation because one can now employ certain powerful methods directly 
in the z-space [22]. 

Recall that the Hamiltonian I? can be split as in (2.23). The corresponding Liouville 
operator may be similarly decomposed as 

0 

i = Ls + LI + LB. (3.13) 

Developing LI as perturbation in the resolvent and suitably rearranging terms up to 
second order in LI we can show [22] 

(3.14) 

where [. . .Iav has been defined in (3.10). The second-order result (3.14) holds for 
interactions HI that vanish when averaged over the bath density matrix pB, as is the case 
fortheinteraction (2.25) inthe Ohmicdissipationcase (2.4), (2.5). Notethat the strategy 
has been to group all terms representing the influence of the heat bath in the resolvent 
itself. Further the truncated series in (3.14), although of order L: (and hence A i ) ,  
t For superoperators S (like i and V(t)) we use the notation (ynl[S(lvm)(v’m’l)]ly‘n’) = 
(pnp’n’/Slvmv”’). 

[0(z)laV = {z  - iLs + [L,(z - iLs - ~ L ~ ) - ~ L ~ J ~ ~ ) - ~  
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already contains terms of arbitrary orders in the original coupling constants Gj in view 
of theexponentiation in (2.10). While it isstraightforward to go beyond O(L:) in (3.14), 
the theory is already quite rich in structure, yielding results equivalent to those obtained 
by the dilute bounce gas approximation (see below). 

As we need the matrix elements of [O(z)lav amongst the spin states (cf. (3.11)) it is 
convenient first to tabulate the matrix elements of the self-energy in (3.14). The latter, 
upon repeated application of the properties of the Liouvillian, turn out to be 

(pvI[LI(z - iLS - iLB)-lLI]a~Ip’V’) 

(V~IHIIV~’)(V’ IHIIP’~) 
f i2  nn’ 

( V  ’4 HIlqn’) (qn’l HI1 vn> 
z - i(En - E,,,)/fi - (is/2) (p - q )  + ‘ w t  

- ( P ~ I H I I P ’ ~ ’ ) ~ ~ ’ ~ ~  lHIl vn) 
z - i(E,? - E,)/h - (ie/2)(pf - v) 

(3.15) 

(3.16) 

ThenextstrategyistoplugintheexplicitformofHI(cf. (2.25)),rewritethedenominators 
back in the form of integrals over t and express the sum over the bath states (n, n’, etc) 
as correlation functions for bath operators. We find for the matrix of 
[L,(z - iLs - iLB)-lLIlav: 

[6-,(2+) + &L(L)] -[&-+(z+) t &L+(Z-)l  0 0 
-[6+-(2-) + &L(Z+)] pL-(Z-) + &L(z+)l 0 0 

(3.17) 
i I 0 0 -[&,+(2) + &);+(z)] [6+-(z) + 61+(z)l 

0 0 [6-+(2) + 6:-(z)] -[&(z) + 6L(2)] 

where the rows and columns are labelled by + + , - - , + - and - + respectively, 

z c  = z * i e  (3.18) 
and 

@+-M = @;/4P+(O)B-(0) 

(3.19) 

Further, all primed quantities are obtained by replacing the argument t by -t, and the 
hat denotes the Laplace transform. It may be stressed again that the angular brackets 
in (3.19) denote thermal averages governed by pB and the time development of B,(t) 
is dictated by HB alone. 
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The matrix in (3.17) has to be combined with that of z - iLs (cf. (3 .14) )  and then 
inverted. However, for our purposes we need focus only on the upper left block in 
(3.17) (see (3.11)), and thus we find (displaying only the upper left block) for the 
matrix of [ U(z)lav: 

(3.20) 
where the determinant Det is given by 

Det = z{z + [&+-(z - )  + &:-(z+)] + [&-+(z+)  + &L+(z-)]}. (3.21) 

The relevant matrix elements of [ U(z)],,can be read out from (3.20) and substituted 
in (3.11) for the purpose of evaluating C(z). It may be remarked that in calculating 
correlation functions other than (o,(O)o,(t)) (which may be relevant in a different 
context) the full 4 X 4 matrix in (3.17) may have to be analysed. 

3.3. The bath correlations 

The method given in §3.2 is independent of the specific nature of the heat bath. 
However, in order to make explicit calculations for the correlation functions enu- 
merated in (3.19) one has to spell out the exact form of the bath variables. Adopting 
then the bosonic model (cf. (2.25) and (2.26)) and using certain well known properties 
of a harmonic oscillator system we find 

@-+(t) = @-+(t )  = @(t) 

(3.22) 

@ k - ( t )  = a.+@) = W(t) = q - t ) .  (3.23) 

(The expressions for @ + + ( I )  and @--(t) are not listed here since they are not relevant 
for our present purpose.) 

The stage is now set to go to a continuum set of bath oscillators, i.e. to replace the 
summation over j in (3.22) by an integral over w with the aid of an appropriate spectral 
function. Using in addition the Ohmic dissipation model (cf. (2.4) and (2.5)) we find 

@(t) = - A2, exp { -2K lox $ exp (q) [ coth (7) Bhw [ l  - cos(cot) - i sin(a)t) 
4 

(3.24) 
For phD %- 1 the integral in (3.24) yields 

Finally, the Laplace transform of (3.25) is given by 

(3.25) 
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where T(z) is the gamma function of argument z. Similarly, 
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(3.27) 

3.4. The spin-correlation function 

Combining (3.11) and (3.20) we derive 

e ( z )  = (l/Det){z - (a,)([&(z+) - 6'(2+)] - [& (z - )  - 6'(2-)])> 
where now Det is given by 

(3.28) 

Det = z{z + ( [ & ( z + )  + &'(z+)]  + [& (z - )  + & ' ( z - ) ] ) } .  (3 -29) 

For the sake of completeness we tabulate: 

2 K - 1  r(i - ~ K ) T ( K +  2 + h p / 2 4  
(3.30) A; &(z+)  + &'(2+) = -cos(nK) 

2 0  

The other necessary expressions are obtained by replacing 2, by z- .  Introducing 

\ 2 K - 1  r(i - ~ K ) T ( K  + z h p / 2 4  
J(z) = 3 (Z) (3.32) 

and recalling zi = z ? ie (cf. (3.18)), the expression (3.28) may be written in the 
compact form 

2 0  hpD r(i - K + z f i p / 2 4  

z - i(a,) sin(7cK) [J(z  + ie) - J(z - ie)] 
z{z + cos(nK) [J(z  + ie) + J(z  - ie)]} 

t ( Z )  = (3.33) 

Equation (3.33) is deceptively similar to the result derived by Grabert and Weiss [23] 
and Fisher and Dorsey [23] for the Laplace transform of the occupation probability 
of an initially localised state within the dilute bounce gas approximation. The 
expression (3.33) for the correlation function is however also crucially different by the 
presence of the factor (a,) in the numerator. 

For further discussion it is convenient to introduce the effective tunnelling fre- 
quency [4, 241 

(2) Km - K ,  
A = [cos(nK)r( l  - 2K)]1/(2-2K)A0 (3.34) 

in terms of which J ( z )  may be written as 

(3.35) 
A hpA 1 - 2 K  r( K + z h p / 2 ~ )  
2 2z cos (nK)r ( l -  K + zfiP/2n) ' J ( z )  = - (-) 

In this expression the cut-off D does not appear any longer. The tunnel splitting A is 
related to the tunnel frequency observed in neutron scattering experiments [4].  In the 
symmetrical case (E = 0 )  the formula (3.33) simplifies to read 

qz) = [z  + 2 cos(nK)J(z)]-' (3.36) 
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which is identical to the answer obtained by us earlier in the dilute bounce gas 
approximation [4]. In the zero-damping limit ( K  = 0)  we have 

J(z) = A2/2z A = A0 (3.37) 

and (3.33) gives 
z2 + e2 

z(z2 + e2 + A2)  
C(2) = (3.38) 

a result that can easily be checked by an independent calculation. In the general case, 
we obtain from (3.33) 

lim d ( z )  = (a,) tan(nK) Im[J(ie)]/Re[J(ie)]. (3.39) 
2-0 

Now, from (3.35) we have 

Im[J(i~)]/Re[J(ie)] = -cot(nK) tanh(hpe/2) (3.40) 
which gives 

lim ze ( z )  = (a,)[-tanh(h/3~/2]. 
2- 0 

Since 

(3.41) 

(3.42) 

we find an internally consistent result only when (a,) is approximated by (2.30). Hence, 
the approximations made so far are quite similar to those inherent in the dilute bounce 
gas approximation which also leads to an equilibrium average of (a,) given by (2.30) 
[ll, 12, 231. The true equilibrium value of (uz) will deviate from (2.30) for finite 
asymmetry and low temperatures. In this region the result (3.33) will not be reliable 
for small values of z where the precise long-time behaviour of C(t) matters. As will 
be seen from the results in the following section, for systems with small K the dominant 
features of the low-temperature structure factor for inelastic neutron scattering depend 
on the behaviour of e ( z )  for frequencies of order A or larger. Only at higher 
temperatures, where the scattering is quasi-elastic, does the low-frequency behaviour 
of e ( z )  become important. In this latter region, however, the thermal average (az) is 
well approximated by (2.30). We therefore expect that for systems with small K the 
theory gives a reasonable approximation for the structure factor in the entire range of 
temperatures. Furthermore, our results become basically exact in the region of quasi- 
elastic scattering at higher temperatures (see below). It is precisely in this region where 
our results on asymmetric systems are particularly important, since for experiments 
at higher temperatures larger defect concentrations are needed to distinguish the 
quasi-elastic peak from the background. 

4. Discussion and conclusions 

4.1. The structure factor 

In this section we summarise our main results. The natural frequency scale of the 
problem is set by the effective tunnelling frequency A characterising the renormalised 
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tunnel splitting of a symmetric two-state system at zero temperature. It is convenient 
to introduce a dimensionless frequency 

v = w/A (4-1) 

a =  &/A (4.2) 

z = kB T/h A. (4.3) 

a dimensionless asymmetry 

where fis is the asymmetry energy, and a dimensionless temperature 

The structure factor (2.19) may then be written as 

2kd 

where 

is a dimensionless function characterising the inelastic part of the structure factor. 
Combining (4.5) with (2.30), (3.33) and (3.35) we find 

2 v + Itan(nK)tanh(0/2z)If(v + a) - f ( v  - a)] 
'('1 = 1 + exp(v/t) Re i v{iv + 4V(v + 0) + f ( v  - a)]} 

where 

r ( K  + iv/2nz) 
r(l - K + iv/2nt) * 

f ( v )  = (2n42K-l (4.7) 

As mentioned earlier, for low temperatures the spectral function (4.6) is not expected 
to be accurate at low frequencies. In fact, the result (4.6) becomes negative for o # 0 
and small t and v. This shortcoming of the perturbative calculation can be removed 
for systems with small values of K ,  as is the case for H in Nb where K is near 1/20 
[5] .  In the limit K 6 1 the function f ( v )  may be approximated by 

(4.8) 

where Y (2) is the logarithmic derivative of the complex gamma function. 
When the approximation (4.8) is inserted into (4.6) the expression can be simplified 

considerably. At  low temperatures the structure factor has two narrow resonances 
near v = k(1 + a2)1/2 which stay away from the parameter region where the result 
(4.6) is not reliable. Near these resonances the function j ( v )  takes the form 
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for K e 1, 2n2K 1, where 

defines the dimensionless resonance frequency v o  with 

w + a  
R , = $ R e  [ Y ( i- 2n2 )] 2 &Re [Y ( i E ) ]  w = (1 + a2)lI2, 

(4.10) 

(4.11) 

The result (4.9) describes two inelastic scattering peaks. The relative intensity of these 
peaks is determined by a detailed balance factor. From (4.10) we see that the peak 
positions are shifted by the asymmetry energy in the usual way and there is a further 
temperature-dependent shift due to the damping. In the asymmetric case the total 
intensity of the peaks is reduced by the factor 1 + a'. Hence, only systems with 
moderate asymmetry contribute to the inelastic scattering. The dimensionless par- 
ameter y reads 

y = nK[C,  - o C - / W ] / ~ W  (4.12) 

with 

(4.13) 

and it determines the linewidth r of the scattering peaks through r = 2yA. In figure 
2 the temperature dependences of v o  and y are depicted for K = 0.05 and various values 
of a = &/A. Frequently, a will be distributed statistically. Then, the a dependence of 
v o  causes an inhomogeneous broadening of the lines and r gives the homogeneous 
linewidth. 

At increased temperatures higher-order terms in K become important which shift 
the resonances towards the origin. At a characteristic crossover temperature the 
scattering peaks merge into a single quasi-elastic peak. For hydrogen trapped by 
oxygen in niobium this occurs for temperatures near 11 K [5] .  In the region of quasi- 
elastic scattering kBT%- h a ,  i.e. z %- 1, we may replacef(v * 0) byf ( t a ) .  This gives 
for the dimensionless structure factor 

2 % - 1  1 1 2Yqe 
= 1 + exp(v/z) cosh2(o/2z) v 2  + y:e 

(4.14) 

where 
sin(nK) cosh(;) l r ' ( K + & )  I 2 

yqe = Relf(o)] = ( 2 n ~ ) ~ ~ - '  ~ n 
(4.15) 

The spectral function (4.14) describes a quasi-elastic peak of linewidth r = 2yqeA. For 
small K the dimensionless linewidth (4.15) can be approximated by 

K a 
yqe = (2n2)2K-l -coth (g) K e 1  (4.16) K 2  + (a/2n2)2 22 
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Figure 2. For a system with dimensionless coupling constant K = 0.05 the dimension- 
less resonance frequency v o  and linewidth y of the inelastic scattering peaks are shown 
as functions of temperature for various values of U -  &/A: - U =  0; - - - - -  U =  1; 
..... u = 2 .  

which shows that asymmetric tunnelling systems have their linewidth reduced roughly 
by the factor 1 + ( 0 / 2 m K ) ~ .  As the temperature increases, systems with stronger 
asymmetry become relevant. 

From these considerations we see that the spectral function j ( v ) ,  equation (4.6), 
changes its form in a characteristic way when the temperature is increased. At low 
temperatures the tunnelling system has a well defined tunnelling frequency and neutron 
scattering shows corresponding inelastic scattering peaks. At higher temperatures 
these peaks merge into a quasi-elastic peak and the system is now characterised by an 
incoherent tunnelling rate. This changeover is also seen from figure 3 where j ( v )  is 
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depicted for two temperatures well below and well above the crossover temperature 
between coherent and incoherent tunnelling. The characteristic temperature depen- 
dence of the scattering function arises from the destruction of the coherent clock-like 
tunnelling of the two-state system by the thermally excited electron-hole pairs. As the 
temperature is increased further, the quasi-elastic peak narrows. This corresponds to 
the region of the anomalous temperature dependence proportional to pK- observed 
for the muon hopping rate [l, 21. Equation (4.16) shows that the simple power-law 
behaviour is modified for asymmetric systems. For defects in metals the peak will 
widen again at higher temperatures because of phonon effects [6, 251 which are 
disregarded here. 

V 

Figure 3. For a system with K = 0.05 the dimensionless structure factor j(v) is shown for 
two temperatures and various values of U: - U = 0; - - - - -  U = 1; . . . . . U = 2, 
u = 4 .  
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4.2. Conclusions 

We have examined the low-temperature behaviour of the structure factor for neutron 
scattering from a defect tunnelling between two trap sites in a metal. At very low 
temperatures the inelastic scattering shows peaks near the tunnelling frequency of the 
system with a finite width due to the interaction with the conduction electrons. As the 
temperature increases, thermally excited electron-hole pairs destroy the coherence of 
tunnelling, and the structure factor becomes that of a system hopping incoherently 
between two sites. The width of the inelastic peak decreases with increasing tem- 
perature until phonon effects set in and enhance the hopping rate. This specific 
temperature dependence of the structure factor is characteristic for the Ohmic dis- 
sipation model. 

The most promising system for an experimental observation of this behaviour 
seems to be hydrogen trapped by oxygen (or nitrogen) in normal-state niobium [3]. 
When the defect concentration is low, the tunnelling systems are almost symmetric. 
For such samples the changeover from inelastic to quasi-elastic scattering was observed 
by Wipf et a1 [ 5 ] .  More recent data [26] are also indicative of a narrowing of the quasi- 
elastic peak with increasing temperature until a minimum is reached around 70 K. 
These experiments require higher defect concentrations, making the tunnelling systems 
asymmetric. 

To determine the structure factor for asymmetric two-state systems we have 
used quantum relaxation theory. The self-energy was evaluated in second-order 
perturbation theory in the tunnel splitting. This is equivalent to a calculation employing 
the functional integral method [ll, 121 in the dilute bounce gas approximation. We 
have pointed out the shortcomings of this approximation but have argued that our 
results become essentially exact in the region of quasi-elastic scattering. It is just in 
this region where they are most important, since higher defect concentrations are 
needed to observe the scattered neutrons against the background. We have further 
argued that for systems with K < 1 the essential features of the scattering intensity in 
the low-temperature region should also be described reasonably well by our results, 
since the intensity peaks at finite frequencies. However, a more accurate calculation 
would be very desirable. 
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